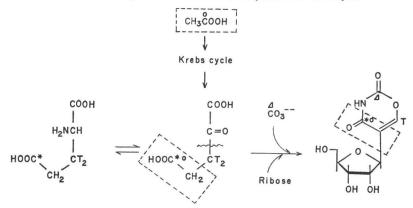

Communication to the editor

BIOSYNTHESIS OF THE C-NUCLEOSIDE, MINIMYCIN: ASYMMETRIC INCOR-PORATION OF GLUTAMATE AND ACETATE INTO THE OXAZINE RING


Sir:

One of the most intriguing of the C-nucleoside group of antibiotics is minimycin (1), which has a unique 1,3-oxazine-2,4-dione ring.^{1,2)} In our previous paper,³⁾ we proposed a C-7 sugar or C-8 branched sugar as a possible biosynthetic intermediate for both the ribose and oxazine moieties of 1. This assumption is mainly based on the incorporation and distribution of ¹⁴C in 1 from [1- or 3,4- or 6-14C] glucose. Recently, we have reinvestigated the biosynthesis of this nucleoside and reached the conclusion that carbons 3, 4, and 5 of glutamate are incorporated asymmetrically into carbons 6, 5, and 4 of the oxazine ring of 1 (Scheme 1).

An in vivo feeding experiment was performed with growing Streptomyces hygroscopicus as described before.³⁾ Incorporation of [5-¹⁴C; 3-³H]glutamate into 1 is shown in Table 1. Both ¹⁴C and ³H were incorporated and the retention of ³H was 23.4%. Acetonization of 1 gave the acetonide (2) with the same specific activity. Permanganate oxidation of 2 afforded 2',3'-Oisopropylidene- β -D-ribofuranosylglyoxylamide^{3,4} (3), which retained 85% of ^{14}C . However, ^{3}H was lost almost completely. Hydrolysis of 3 with 5 N HCl followed by decarboxylation with

	DL[5-14C;3-3H]Glutam		mate	[U-14C;3-3H]Glutamate*			[1-14C]Acetate
	Sp Act. (µCi/µmol)		311/140	Sp Act. (µCi/µmol)		311/140	Sp Act.
	⁸ H	¹⁴ C	³ H/ ¹⁴ C	⁸ H	¹⁴ C	³ H/ ¹⁴ C	$(\mu Ci/\mu mol)$
Compound added	1.09	0.17	6.46	0.528	0.10	5.28	3.19×10 ⁻⁸
Minimycin (1)	1.96×10 ⁻⁴	1.30×10^{-4} (1300)**	1.51	1.25×10 ⁻⁴	8.20×10 ⁻⁵ (1220)**	1.52	1.81×10 ⁻⁶ (1760)**
Acetonide (2)	2.06×10^{-4}	1.29×10^{-4}	1.60	1.39×10^{-4}	8.16×10 ⁻⁵	1.71	$1.50 imes 10^{-6}$
Glyoxylamide (3)	1.64×10^{-5}	1.09×10^{-4}	0.15	6.87×10 ⁻⁶	4.04×10^{-5}	0.17	1.12×10 ⁻⁶

25.2 μ Ci of L[U-14C]glutamate and 266 μ Ci of DL[3-8H]glutamate were mixed. The 8 H/ 14 C ratio was calculated on the basis of L-isomer. **

Dilution: Sp Act. of compound added/Sp Act. of 1 isolated.

Compound fed	$\% \frac{{}^{14}C \text{ in } CO_2}{(C-4)^*}$		
DL[5-14C;3-8H]Glutamate	104.9		
[U-14C;3-8H]Glutamate	62.1		
[1-14C]Acetate	103.3		

Table 2. Distribution of ¹⁴C on the amide carbon of compound **3** (carbon 4 of **1**)

* (Total disintegration per minute of CO₂ trapped in hyamine/Total disintegration per minute of 3 used) × 100.

ceric sulfate in $2 \times H_2SO_4^{4,5}$ resulted in quantitative recovery of ¹⁴C as CO₂ (Table 2). This result clearly indicates that carbons 3, 4, and 5 of glutamate are the origins of carbons 6, 5, and 4 of the oxazine ring of 1 as illustrated in Scheme 1. Partial loss of ³H from carbon 3 of 1 (theoretical ³H retention is 50%) may be reasonable, since it would become labile in the equilibrium between enol and keto forms of α -ketoglutarate.

The [U-¹⁴C; 3-³H]glutamate experiment also supports this scheme. In this case, 3 retained 50% of ¹⁴C (Table 1). On decarboxylation of 3, 62% of ¹⁴C was evolved as CO₂ (Table 2). The rest of ¹⁴C should be located on carbon 5. ¹⁴C from [1-¹⁴C]acetate* was distributed predominantly on carbon 5 as in the case of the [5-¹⁴C]glutamate experiment (Table 2).

Incorporation of an acetate unit into carbons 4 and 5 of 1 was further confirmed by the feeding of $[1,2^{-13}C]$ acetate. ¹³C-NMR analysis of 1 isolated has shown a satellite coupling ($J_{ee} = 64.5$ Hz) between carbon 4 (114.9 ppm)** and carbon 5 (163.9 ppm). This is an independent and unambiguous proof for the incorporation of an intact acetate unit.

The reported data³⁾ on incorporation and distribution of $[1-^{14}C]$ glucose, $[3,4-^{14}C]$ glucose and $[1-^{14}C]$ ribose into 1 would not conflict with the present scheme. The low incorporation of ^{14}C into the oxazine ring from $[6-^{14}C]$ glucose needs explanation. It may be that the hexose monophosphate oxidative pathway is predominant over the glycolytic pathway in this organism, resulting in almost exclusive incorporation of ^{14}C into C–5' of the ribose moiety. In contrast, the contribution of the glycolytic pathway becomes significant in the $[1-^{14}C]$ glucose experiment, because the operation of the hexose monophosphate oxidative pathway results only in the formation of unlabeled pentose phosphate. Thus, the present data together with the data reported earlier³¹ support strongly the pathway for the biosynthesis of 1 as shown in Scheme 1.

It should be especially worth noting that all the C-nucleoside antibiotics whose biosyntheses have been studied, *i.e.*, showdomycin,⁴⁾ formycin,⁶⁾ and minimycin, have the common biosynthetic precursor, glutamate for their nucleobases.

Acknowledgement

We gratefully acknowledge Kaken Chemical Co. for a generous gift of a subculture of *S. hygroscopicus*.

KIYOSHI ISONO*

The Institute of Physical and Chemical Research Wako-shi, Saitama 351, Japan

ROBERT J. SUHADOLNIK

Department of Biochemistry Temple University School of Medicine Philadelphia, Pennsylvania 19140 U.S.A.

(Received December 13, 1976)

References

- KUSAKABE, Y.; J. NAGATSU, M. SHIBUYA, O. KAWAGUCHI, C. HIROSE & S. SHIRATO: Minimycin, a new antibiotic. J. Antibiotics 25: 44~47, 1972
- SASAKI, K.; Y. KUSAKABE & S. ESUMI: The structure of minimycin, a novel carbon-linked nucleoside antibiotic related to β-pseudouridine. J. Antibiotics 25: 151~154, 1972
- ISONO, K. & R. J. SUHADOLNIK: The biosynthesis of the nucleoside antibiotics: minimycin formation by *Streptomyces hygroscopicus*. Ann. New York Acad. Sci. 255: 390~401, 1975
- ELSTNER, E. F. & R. J. SUHADOLNIK: Nucleoside antibiotics. Asymmetric incorporation of glutamic acid and acetate into the maleimide ring of showdomycin by *Streptomyces showdoen*sis. Biochemistry 11: 2578~2584, 1972
- MEISTER, A.: Enzymatic preparation of αketo acids. J. Biol. Chem. 197: 309~317, 1952
- OCHI, K.; S. YAJIMA & Y. EGUCHI: Annual Meetings of Agricultural Chemical Society of Japan, Sapporo, July 1975

^{*} Very low incorporation of ${}^{14}C$ from [1- ${}^{14}C$]acetate previously misdirected us to our former conclusion (ref. 3).

^{**} Solvent: $D_2O - H_2O$ (1:1). δ_c was calculated from internal dioxane (67.39 ppm).

^{*} Correspondence should be addressed to this author.